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-AbitracL When using an'iterative method for solving gene ized nonsymmetric eigenvalue
problem of the form Fu = .Mu, where F and M are rei mat ces, it is often desirable to work
with the shifted and inverted operator B = (K - aM) M order to enhance the eigenvalue
separation and improve efficiency. Unfortunately, the shift i is generally complex and so is the
matrix B. The question then is whether it is possible to avoid complex arithmetic while preserving
the advantages of bandedness of the pair (F, M). For the classical problem where M = I and F
is banded, complex arithmetic can be avoided by using double shifts, i.e., by working with the real
matrix BA whose bandwidth is double that of F. This satisfactory solution extends to the case

- -where M is diagonal as well. In the generalized case the answer to the above question is negative,
-. in the sense that complex arithmetic can be avoided only at the expense of loosing the advantage of

bandedness. One solution is to factor the shifted matrix F - fM in complex arithmetic but employ
real arithmetic subsequently in the iterative procedure. T] is paper examines several approaches
and discusses their respective merits under different circum tances.
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1. Introduction
This communication is concerned with the eigenvalue problem: solve

(F - AM)z =0, (1.1)

for A E C and z E CN, when F, M are real N x N matrices. Throughout the discussion, 11 will be
symmetric and positive definite. In a number of applications, M = I, the identity matrix. There
will be no restriction on F except that it have complex eigenvalues. More precisely, we suppose
that only a few of the eigenvalues A are wanted, namely those in the vicinity of a given complex
number a. What makes this task challenging is

(1) the desire to keep computation in R rather than in C;

(II) the desire to exploit any narrow band structure enjoyed by F and M.

These two desires can be in conflict. We shall assume for convenience that Fand M have the
same bandwidth 2/3 + 1; the (i,j) elements vanish whenever [i - jl>/o. Moreover, we shall assume
that the band is narrow, i.e., that 8 << n. Note that the goal (II) can be generalized into that of
exploiting any particular sparse structure, not just bandedness.

Every reasonable approach known to us requires an iterative process at each stage of which a
system of equations must be solved. The simplest of these is

(F - oM)y = Mb

where b is given and y is to be computed. Our problem reduces to an attempt to reconcile the two
aims (I) and (II), when solving the above system, or rival ones similar to it.

In the body of this paper we present all the alternatives that have occured to us and analyze
them. In particular, we show a surprising connection between two of them. Unfortunately, our
analysis leads to no "best" method, but we give operation counts and storage costs for the better
techniques.

Before proceeding with the algebra, we should say something about complex arithmetic. We
can imagine an arithmetic engine that would employ 4 real arithmetic processors in parallel to
compute the product of two complex numbers in almost the same time as required for a real
multiplication. We know of no such computer at present. In some systems we know of, (VAX 780),
the ratio complex:real arithmetic is nearly four but, in others, the cost of accessing the arguments
has become sufficiently large to reduce the ratio to nearly two. The storage penalty remains at 2:1.

2. Inverse Iteration

Throughout the paper we write the shift a as

a= p+i B,

with 0>0 and i2 = -1. In our context, inverse iteration is defined as follows:

1. Choose x(1) satisfying Ix('lI = 1.

2. For k = 1, 2...,. until convergence do

2.1. Solve
(F - aM)y( k) = Mx(k) (2.1)

2.2. Normalize: x(k+ l) = (k)/(k), where (k) is the component of (k) of largest modulus.

2.3. Check for convergence.
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In the generic case the sequence {x(k)} converges to z where Fz = Mz and A is the eigenvalue
*" -closest to a. One can approximate A by a+ x(k)(j)/y(k)(j) where y(k)(j) is an above average element

of y(k). A better but more expensive approximation is the Rayleigh Quotient,

'.. (yz(k), X(k))
p(x(k)) = (MX(k),x(k))

Of course we may seek several eigenvalues close to a, not just one. Consequently, more elaborate
iterations are needed. Examples are Arnoldi [1, 6], Lanczos [4, 2], or simultaneous iteration [3]
(also known as subspace iteration). The differences between these methods are not important here
because they may all be used with the same operator, namely

B = (F - aM)-'M. (2.2)

Note that the sequence {x(k)} may be thought of as generated by multiplying each term by B
and then mormalizing in order to get the next one. The matrix B is not formed explicitly. The
dominant part of each step in any of the iterative methods is the solution step 2.1 of the algorithm.
One way to carry this out is

Method 1

to compute the triangular factorization,

F - oM= LU,

once and for all (in complex arithmetic). Then system (2.1) is solved by the two triangular
solves (in complex arithmetic):

Lw(k) = MX(k), Uy(k) = W(k).

Recalling the two goals in the introdution, we see that by abandoning (I), real arithmetic, we
can exploit (II), band structure. The costs of Method 1 are as follows.

o Arithmetic. Factorization : /32 N complex multiplications. Forward and backward solutions:
2(0 + 1)N complex multiplications. Normalization: N comparisons and N real multiplications
in step 2.2.

o Storage. 2(20-+ 1)N real locations for F and M; (217+ 1)N complex locations for F-afl = LU;
plus two complex vectors for storing x(k) and y(k).

Now consider the implementation of step 2.1 in real arithmetic. We write y = Yr + i yi, for
any vector y E CN. In the standard way we equate real and imaginary parts to get

(F - pM)yr + OMyi = Mxr (2.3)

-My. + (M - pM)yi = Mxi (2.4)

or, in matrix form
(F -p1f FOM Y) (M (x-) (2.5)pO pM 0 M X.

2
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* This system of order 2N has lost the band structure of (2.1). It achieves (I) at the expense of
(II). For future reference it is important to observe that the iteration associated with (2.5) attempts

* to compute the eigenpairs of the (2N) x (2N) real matrix
* (: 07- F - pM OM ) (M-F-p )

(. . M ,-OM F- pM , OI M- - pI)
The expression of the inverse of the above matrix is of great help when establishing relationships

between the various approaches taken in later sections. Letting

A =M-'F

we have A-pI 0 1

(A-0I A - pIY' Oy 1 X-1) (2.6)

in which,
X =(A- pI) +0 2 (A - pI)-, Y = X(A- pI) =(A- pI) 2 + 02 1 (2.7)

In particular it can be seen from above that Yr, yi can be obtained by solving for Yr first, by

[(F- pM) + 82M(F - pM) - M] yr = Mx,. - OM(F - pM)- 'Mxi (2.8)

and then getting yj by substitution in the equation (2.3),

OMy = Mxr - (F - pM)yr,

which gives 1
y. = i [x, - (M - 'F - pI)yr]. (2.9)

Note that one can also compute yi first from an equation similar to (2.8) and then substitute in
(2.4) to get y,..

When M = I a simplification is possible, by multiplying both sides of (2.8) by (F - pI):

Method 2 (For the case M = I)

To solve the system (2.1)in inverse iteration algorithm, compute the real part yr of y(k) by

[(F- p) 2 + 02 ] y.= (F- p)x -0,x, (2.10)

and its imaginary part y, by (2.9).

The bandwidth has been doubled but not ruined. The matrix F 2 may be stored once and for
all, allowing for changes in o. The costs of this method are as follows.

Arithmetic. Factorization of (F - pi)2 + 021 (done once) : 42 N real multiplications. Forward
and backward solutions: 8(/6 + 1)N real multiplications. Normalization: 2N comparisons and
2N real multiplications in step 2.2.

* Storage. (4/3 + 1)N real locations (F - p1) 2 + 021, and (4/ + 1)N real locations for its LU
factorization. Four real vectors for storing x(k) and y(k).
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3. The general case.

Consider again (2.8). If Ml is diagonal then Method 2 extends readily and we will not con-
sider this further. We now take up the general case when A[ has the same band structure as F.
Premultiply (2.8) by (F - pM')M- 1 to get the analogue of (2.10):

[(F - pMl)At'1 (F -pil) + 02 M] yr (F - pM)xr - 01xi (3.1)

We wvill define

G =_(F - pM)M- 1 (F - pM) + 02M = FM-1 F - 2pF + j 2M. (3.2)

Unless Ml is diagonal, the presence of M-1 ruins the bandedness; of the matrix G which will be full
in general. Note that

M'G = Y (3.3)

where Y is defined in (2.7).
Nevertheless, band structure may still be exploited, especially in a number of applications

where F and M are generated by the finite element method. In those situations it is common to
replace the consistant mass matrix M by a diagonal lumped mass marix D. The diagonal elements
of D are the elements of the vector Me where e = (1, 1,.. )T. The real matrix

FD-1 F -2pF + IW1M

has twice the bandwith of F and M and may be factored efficiently into LU. This matrix is used as
a preconditioner for the proper matrix. The inner iteration should converge in a very small number
of iterations. The following iteration on the residuals is the simplest technique.
Method 3

Set r - (F - pM)br. - O~fb,
Until convergence do:

(i) Solve LUd r
(ii) compute r- r -Gd, Yr~ -y+ d.
(iii) If liril too large then repeat.
(iv) else get ya by (2.9) and return.

We omit to give the details on the costs of the above method, because the process is iterative
and is not comparable to previous techniques.

4. The double shift approach

A problem similar to ours, but in the context of the QR algorithm, was solved by J.G.F.
Francis in 1961/62. If A E RN.N' and a E C then Y =_(A - l) (A- &I) = [(A - p) 2 + 2 j] E RN,N.
This matrix, which is real, is a quadratic polynomial in A and shares A's eigenvectors. When A
is replaced by M-'F then this matrix coincides with the matrix Y defined by (2.7). By (3.3), the
eigenvalues of Y are those of the generalized eigenvalue problem Gz = vz or:

[FM-1 F - 2pF + Iol2M] Z = V~MZ (4.1)

where v = A2 - 2pA + J012. Unless M is diagonal, or block diagonal, this matrix is real but full.
Even the actual computation of this matrix may not be practically feasible.

4
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In the present context, inverse iteration is defined as in section 2 except that the system (2.1)
is replaced by ( Mx(k). (4.2)

We can solve the above system iteratively as indicated in the previous section. However, there
are alternative approaches that fully exploit band structure, provided we relax our constraint on
working entirely in real arithmetic. Let LU be the (complex) factorization of (F - oM). The
matrices L anf U will inherit the band structure of F and M. Now to solve Gy = M'fx where
y E RN, x E RN, note that

Gy LUM- 1 L1y = Mx.

An algorithm for computing y is

Method 4

(i) Solve La = Mx for a E CN
(ii) Solve Ub = Ma for ab E CN

(iii) Form c = Mb

(iv) Solve Ld = c for d - CN

(v) Solve e = d for e E CN

(vi) Set y = Re (e).

The complex arithmetic is hidden in the above subroutine that maps x into y. The iteratiom that is
used to compute one and two dimensional eigenspaces of Y-1 can confine itself to real arithmetic.
We shall have more to say about the matrix Y- 1 in the next section. Now we resume the quest for
an operator that requires no complex arithmetic and yet takes advantage of narrow bandwidth.

5. Real and Imaginary Part approaches

Inverse iteration with shift o is equivalent to direct iteration (i.e., the power method) using
the operator (F - aM) - 1 on CN. To obtain related operators on RN we can take the real and
imaginary parts

B+ = 2 [(F - aI)-' + (F - &M)-'] M - Re [(F - oM)-'M], (5.1)

B- = [(F - oM) - -(F- GM) - ] M Im (FF -&MM)'M]. (5.2)

If Fz = AMz then

=+ 2 + T - ,B- . ( 5.3),

defining p+ and u- the eigenvalues of B+ and B- associated with the eigenvector z of A. It is
readily verified that as A -o. r,

2("\ --

Thus B+ and B- give the same enhancement to eigenvalues close to zero. In contrast, as A oc,
B- dampens the eigenvalues more strongly than does B+ since,

5
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The question now is whether it is possible to reconcile the two aims (I) and (II) set out in the
introduction, when computing B+ v and B_ v for any v E RN. Reference back to (2.8) shows that

B+v = [(F - pM) _- 02M(F - pM)-1M]' v = X-'v.

If real arithmetic is mandatory (aim (I)) then the presence of the full matrix (F - pM)- 1 in X
precludes the exploitation of bandedness (aim (II)) in the triangular factorization of X. This leaves
two possibilities:

1. Solve Xu = v for u iteratively, in real arithmetic, exploiting band structure as described at the
end of Section 3.

2. Ignore the structure of B+ and evaluate B+v by solving (F-aM)u = Mv in complex arithmetic
and then returning the real part (respectively the imaginary part for a method using B_ ) This
is Method 5. "

Method 5

1. Solve (F - aM)w = Mv ( complex arithmetic).

2. Set B+v = Re(w) (respecively Bv = Im(w)).

The cost of the above method is as follows.

* Arithmetic. Factorization (done only once) : g 2 N complex multiplications, Forward and back-
ward solutions: 2(/0+ 1)N complex multiplications. Normalization: N comparisons and N real
multiplications in step 2.2.

e Storage. 2(20+ 1)N real locations for F and M; (23+1)N complex locations for F-aM = LU;

plus two complex vectors for storing x( k) and y(k).

Method 5 is a compromise. What must be emphasized here is that from the point of view of the
iterative methods, such as Arnoldi, Lanczos, or subspace iteration, that will be making use of B+
there is no compromise. Goal (I) is realized. These iterations will use real arithmetic exclusively.
Goal (II) is achieved by using complex arithmetic in the lower level subroutine that evaluates B+v.

Note that the cost of Method 5 is lower than that of Method 4 of the previous section. In fact
the extra work in Method 4 brings no further benefit in the light of the following surprising result.
Recall that G = (F - aM)M1- (F - aM) + 02M.

Theorem 5.1. The matrices B_,G and M are related by

B_ OG-1M. (5.5)

Proof. We have, by definition,
1

B= [(F-aM)- - (F- d-M)-]M
2i

= -(F - oM)-' [(F - aM) - (F - a'M)](F -M)-'M
2i

= (F - aM)-'OM(F - M)-'VM
= OG-'AM

6
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By the theorem the solution y(k) of (4.2) is identical with Bx(k), apart from the multiplicative
scalar 0. Note also that the right-hand side of (5.5) is nothing but OY - 1 , i.e., the block in position
(2,1) of the matrix in (2.6).

6. Numerical experiments

All numerical tests have been performed on a Vax-785 using double precision, i.e., the unit
roundoff is 2-56 ; 1.3877 x 10- 17 . Our test example, taken from [51, models concentration waves
in reaction and transport interaction of some chemical solutions in a tubular reactor. The concen-
trations x(r,z),y(r,z) of two reacting and diffusing components, where 0 < z < 1, represents a
coordinate along the tube, and where r is the time, are modeled by the system [5]:

ax DX 2 xar T2T _ + f(xI A), (6.1)

ay + )a2 , (6.2)-a -L 2  + ( IA

with the initial condition

x(0, z) =Xo(z), y(O,z) =yo(z), VzE [0,1],

and the Dirichlet boundary conditions:

x(0,r) = x(1,r) = x, y(0,r) = y(1,r) = y*.

We consider in particular the so-called Brusselator wave model [5] in which

f(x,y) = A - (B + 1)x + x 2y , g(x, y) BX - X 2 y. (6.3)

Then, the above system admits the trivial stationary solution x* = A, y* = B/A.
In this problem one is primarily interested in the existence of stable periodic solutions to the

system as the bifurcation parameter L varies. This occurs when the eigenvalues of largest real parts
of the Jacobian of the right hand side of (6.1) - (6.2), evaluated at the steady state solution, is
purely imaginary. For the purpose of verifying this fact numerically, one first needs to discretize
the equations with respect to the variable z and compute the eigenvalues with largest real parts of
the resulting discrete Jacobian.

The exact eigenvalues are known and this problem is analytically solvable. The article [5]
considers the following set of parameters

1
Dx = 0.008, Dy= -Dx = 0.004, A =2, B = 5.45.

2

For small L the Jacobian has only eigenvalues with negative real parts. At L R 0.51302 a purely
imaginary eigenvalue appears.

We discretize the interval [0, 1] using n interior points, and define the mesh size h M 1/(n + 1).

The discrete vector is of the form () where x and y are n-dimensional vectors. We denote by

fh ard gh the corresponding discretized functions f and g, the Jacobian is a 2 x 2 block matrix in
which the diagonal blocks (1, 1) and (2,2) are the matrices

1-D. Tridiag{1,-2, 1} + ah(X,
T 2 L2  ax

7
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and
1 D Tridiag{1, -2, 1} + agh(x,y)

h2 L2 c y

respectively, while the blocks (1,2) and (2, 1) are

afh(x,Y) a gh(x,y)

and Oay ax

respectively. Note that since the two functions f and g do not depend on the variable z, the
Jacobians of either fh or gh with respect to either x or y are scaled identity matrices. We denote
by A the resulting 2n x 2n Jacobian matrix. In the following tests we took n = 100, which yields
a matrix A of size 200. We point out that the exact eigenvalues of A are readily computable, since
there exists a quadratic relation between the eigenvalues of the matrix A and those of the classical
difference matrix Tridiag{1, -2, 1}. In fact part of the spectrum (tLe 32 rightmost eigenvalues) of
the matrix A is shown in Figure 4. We have not shown the rest of the spectrum of A consisting
of 168 real eigenvalues that are almost uniformely distributed in the interval [-1,235.5, -51.912].
The rightmost eigenvalues, determined with maximum accuracy, i.e., approximately 16 digits are

A1 ,2 = 1.S199876787305946 x 10-5± i 2.139497522076329

As is observed the real part is close to zero, which verifies the theory, within discretization errors.
The purpose of these experiments is to compare the performances of the methods using the

three approaches B = (A-aI)- 1 , B+ = Re(B) and B_ = Im(B), all in conjunction with Arnoldi's
method. We have plotted the convergence history for the three methods for three choices of the
shift a, namely a = 0.1 + 2.1i, a = 0.0 + 2.5i, and a 0.5 + 2.li. The plots in Figures 1, 2 and 3
show the relative errors A(m) - A

1 (6.4)A1

versus the number of Arnoldi steps. As is observed the performances of the two different approaches
are not constant.

In Figures 5 and 6 we show the spectra of the corresponding matrices B+ and B_ for the last
two cases, i.e., for a = 0.5 + 2.1i and for a = 2.5i. In each case we have circled the eigenvalue of
largest modulus. Notice the very good separation properties of the dominant eigenvalue despite a
relatively distant shift. Also observe the concentration around the origin of the transformed large
eigenvalues of A. The reader should note that the scales are different. For example in the top
graph in Figure 6 the x-axis has a total length of 0.08, which means that the spectrum is almost
purely imaginary in this case. The spectra of B+ and B_ bear no particular resemblance and it is
hard to predict from looking at the pictures only which method will converge faster.

It is also instructive to compare the two mappings p+(A) and p-(A) as defined by (5.4). As
an experiment we plotted the images u+(A) and p-(A) of several circles of small radii, centered at
the shift a. The goal is to compare the two mappings for a similar situation where the eigenvalues
of the original matrix A are distributed in circles around the shift. When a = 0.5 + 2.1i and the
radii were 0.1,0.2,.. .,0.5 respectively, the two resulting plots looked very much like five concentric
circles and were almost indistinguishable for the cases B+ and B_. For this reason we omit to show
the resulting figures. Changing a to 0.5 and taking the same radii as above produced the graphs
in Figure 7.

Notice again that the outmost curves, those corresponding to the dominant eigenvalues of B+
and B-, are slight perturbations of circles. Although not apparent at first glance, the outmost

8



curve for B+ is almost superposable with that of B_ provided we shifted the whole plot of B_
in the south-west direction by about one unit of the graph. Notice also that the B_ graph is
symmetric about the real axis as is expected from the definition of p-. Similarly. the U+ curves
can be seen to be symmetric with respect to the imaginary axis, as is verified in the plots.

In the following discussion we assume that there is one actual eigenvalue of A per circle.
i.e, there is only one eigenvalue of B+ or B_ per curve represented in the two plots of Figure 7
repectively. Assume at first that the two dominant eigenvalues for B+ are located on the imaginary
axis in the lower half plane. These are roughly u+,l -5.45i and U+,2 - -2.9i which means that
the the convergence ratio in inverse iteration would be jI+,2/P+,ll - 0.532. It is found that the
corresponding eigenvalues of the B_ matrix are the two dominant eigenvalues -4.54 and -2.08,
which leads to the convergence ratio of 0.462, much better than that of the B+ approach. Assume
on the -ther hand that both the dominant and the subdominant eigenvalues of B_ are located on
the real axis on the right half plane: a-,, _ 5.554 and P-,2 3.12. Then the associated convergence
ratio for inverse iteration with B_ becomes I[y2//k_,j I 0.562. The corresponding eigenvalues
of B+ are found to be approximately u+,, 4.44 and U+,2 

"  1.875 which gives the convergence
ratio 0.44 for inverse iteration with B+, a much better ratio than that of the B_ approach. Thus.
the previous situation has been completely reversed. What is interesting is that this has occured
in spite of keeping the distances of the two eigenvalues of A closest to the shift the same in both
situations. In other words it is not only the distance of these eigenvalues that matters for the speed
of inverse iteration, but also their relative location around the shift. This tells us that in practice
it will be vain to try determining a-priori which of the two approaches is to be favored.

7. Summary and conclusion

We have examined several ways of implementing shift and invert techniques for tile eigenvalue
problem F: = A-1z, in the common situation where the shift is complex while F and Ml are real and
banded matrices. If ,If is diagonal there are several possible variants which will perform equally
well. On the other hand, when A is arbitrary, then any attempt to avoid complex arithmetic
completely would result in problems with full matrices. Then the advantages that might be gained
from any exploitable structure of F and M, such as bandedness sparsity and so on, would be lost.
One alternative proposed for this situation is to use a real operator, whose eigenvalues offer the same
,eparation enhancement as those of the ideal operator B = (F- A)-111. Two such operators are
the real part B+ and the imaginary part B_ of the operator B. Thus, in a typical iterative method,
for example Arnoldi's -. ethod, the factorization of the operator B and the forward and backward
solutions needed when applying B to a vector, are still performed in complex arithmetic, but the
iterative method itself, e.g. Arnoldi, would be realized entirely in real arithmetic. The first dvantage
of using either of these approaches over that of using B, is economical: we save computational time
and storage, in the Arnoldi part of the method. The second is purely mathematical: we have
replaced an eigenvalue problem with a real operator with one having the same property.

Although it is practically infeasible to determine which of the two approaches B+ or B_ is
be,,c in general, the numerical experiments suggest that they both perform nearly as well as that
of using the operator B.
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